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MODELING OF RESONANCE EFFECTS IN ONE-DIMENSIONAL 
PERIODIC DIFFRACTION GRATINGS CONTAINING GRAPHENE STRIPS 
Part 1. MATHEMATICAL JUSTIFICATION OF THE SPECTRAL METHOD 

 Subject and Purpose. Th is paper presents a theoretical study of the interaction between monochromatic electromagnetic radiation 
and a one-dimensional periodic strip grating. Th e grating consists of periodically alternating perfectly conducting and graphene 
strips located at the boundary of a planar dielectric layer. Th e aim is to provide a mathematical justifi cation for the spectral method 
analysis of resonance eff ects arising during the interaction of electromagnetic radiation with the strip grating.

Methods and Methodology. Th e mathematical justifi cation of the spectral method is based on the theory of non-self-adjoint com-
pact operators in Hilbert spaces and the theory of compact analytic operator functions. In particular, we apply Keldysh’s theorems on 
the completeness of eigenvectors and associated vectors of non-self-adjoint compact operators, as well as the operator generalization of 
Rouché’s theorem for analytic operator functions.

Results. Th e spectral approach to solving the diff raction problem of a one-dimensional periodic strip grating, which includes 
graphene strips, has received a rigorous mathematical treatment. It has been established that the diff raction fi eld can be repre-
sented as an expansion in eigenfunctions of the spectral problem, where the spectral parameter (eigenvalue) enters linearly into 
the boundary condition of conjugation on the graphene strips. Th e existence of the spectral problem solution has been proved in 
the case of small widths of the perfectly conducting strips. Th e completeness of the system of eigenfunctions (eigenvectors) in the 
corresponding Hilbert space has been demonstrated. As a consequence, in an unbounded region, there is a possibility to expand the 
diff raction fi eld in resonance terms. An equation for resonance frequencies has been derived, indicating that the imaginary part of 
the spectral parameter equals the imaginary part of the surface conductivity of the graphene strips in the grating.  

Conclusions. Th e developed spectral method enables eff ective analysis of resonance eff ects that occur when electromagnetic 
radiation interacts with a one-dimensional periodic diff raction grating that includes graphene strips. Th is method can be used in 
the mathematical modeling of various devices and systems that utilize such gratings. 
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Introduction

Recent advances in the fabrication of graphene 
and graphene-based periodic nanostructures have 
opened up promising opportunities for the develop-

ment of tunable metamaterials and integrated plas-
monic devices with potential applications in the tera-
hertz and infrared frequency ranges (see, e.g., [1]). 
Th e design of graphene-based devices is fundamen-
tally related to the advancement of modeling tools 
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that utilize rigorous solutions of Maxwell’s equations 
and graphene conductivity models. Of particular 
interest and practical importance is modeling vari-
ous resonance eff ects occurring during the interac-
tion between electromagnetic radiation and periodic 
graphene-based nanostructures. One of the recog-
nized approaches in this fi eld exploits the idea of analy-
tic continuation of a frequency into its complex domain 
(generally, to a certain Riemannian surface) in terms of 
the boundary value problem of diff raction governed 
by Maxwell’s equations. Th e solution of this problem 
describes the interaction of monochromatic electro-
magnetic radiation with open resonant-type struc-
tures, such as periodic gratings containing graphene. 
Th e sense of this analytic continuation procedure is 
clear, implying that the singularities of the analyti-
cally continued solution of the diff raction problem 
fully determine the behavior of corresponding charac-
teristics of the diff raction fi eld in the domain of real-
valued parameters (e.g., real frequency).

Th e analysis of these singularities is a fi eld of sig-
nifi cant research into the nature and physical mecha-
nisms of resonance and anomalous responses of 
open structures to external excitations. Th e funda-
mental concepts and methods of this approach ([2] 
and the references therein) are believed to be espe-
cially eff ective for studying the diff raction of mono-
chromatic electromagnetic waves by various types 
of periodic structures [3]. Th e main drawback is the 
impossibility of representing the diff raction fi eld as a 
series expansion in resonance terms, similar to eigen-
mode expansion in the theory of closed resonators. 
Although such representations are possible in some 
special cases (analogous to the Mittag-Leffl  er ex-
pansion in the theory of meromorphic functions of 
complex variables), they are not generally available. 
Another weakness is somewhat technical and arises 
from the fact that the complex frequency domain cor-
responds to an infi nite-sheeted Riemannian surface. 
(for problems of wave diff raction on periodic struc-
tures [3]). In general, a global uniformization of such 
Riemannian surfaces is not known, which signifi -
cantly complicates the analysis of diff raction prob-
lems. Furthermore, signifi cant challenges arise when 
the structure physical parameters (dielectric permit-
tivity, graphene surface conductivity in the Kubo for-
mulation, etc.) vary with frequency.

In response to modeling resonance eff ects in pe-
riodic nanostructures, the authors consider an alter-

native approach based on a diff erent idea, which was 
seemingly fi rst introduced [4] for quantum mechani-
cal scattering problems in terms of the Schrödinger 
equation. In [4], the Schrödinger equation solution 
in an unbounded domain is series expanded in eigen-
functions of an auxiliary spectral problem, where the 
spectral parameter (eigenvalue) is the coupling con-
stant, the factor multiplying the potential energy term. 
In diff raction theory, this idea allows representing the 
solution of Maxwell’s equations in an unbounded re-
gion as a series expansion in eigenfunctions of an 
auxiliary spectral problem (without sources). Th is ap-
proach has become known as the generalized method 
of eigenoscillations (see references in [5]). In this for-
mulation, it should be particularly emphasized that 
(i) the spectral parameter is not a frequency, eigen-
functions of the auxiliary spectral problem satisfy the 
same radiation condition as the diff raction problem 
solution does, (ii) the frequency remains real-valued, 
and there is no need for the analytic continuation of 
the solution into the complex frequency domain, and 
(iii) the main concept of the approach is that the spec-
tral parameter is not a frequency (as in the previous 
approach) but some physical parameter, e.g., the con-
ductivity of graphene. Importantly, the amplitudes 
of the expansion terms are inversely proportional to 
the diff erence between the spectral parameter (eigen-
value) and the corresponding physical parameter in 
the diff raction problem. Since the spectral parame-
ter depends on frequency, resonances may occur at 
frequencies where the spectral parameter approa-
ches the physical parameter. Th is method is akin to 
the classical technique of eigenmode expansion for 
diff raction problems in bounded regions (theory of 
closed resonators). 

In this context, a spectral method is developed for 
modelling resonance eff ects arising in the interaction 
of monochromatic electromagnetic radiation with a 
diff raction grating of periodically alternating per-
fectly conducting and graphene strips.

Part I presents a rigorous mathematical formu-
lation of the spectral method as applied to a planar 
strip grating of periodically alternating perfectly con-
ducting and graphene strips. Th e auxiliary spectral 
problem (the spectral parameter is the surface con-
ductivity of graphene) is reduced to the eigenvalue-
and-eigenvector problem for a non-self-conjugate 
compact operator in the corresponding Hilbert 
space. Th e completeness of the system of eigenvec-
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tors is established, which allows the diff raction fi eld 
in an unbounded region to be expressed as a series 
expansion in resonant terms.

Part II is devoted to the extension of the spectral 
method to the diff raction problem of the aforemen-
tioned planar strip grating located at the boundary 
of a dielectric layer. Mathematical modeling results 
on resonance eff ects accompanying the electromag-
netic interaction with this grating structure will be 
reported.

1. Th e problem formulation, 
the model problem
1.1. Th e diff raction problem

Th e problem of interaction between monochromatic 
electromagnetic radiation and a planar strip grating 
composed of periodically alternating perfectly 
conducting and graphene strips is considered. Th e 
grating is supported by a planar dielectric layer 
(substrate) of thickness h, absolute permittivity 
0, and permeability 0, with 0 and 0 being the 
vacuum permittivity and permeability. In Cartesian 
coordinate system x, y, z in the Figure, the grating 
is located in the plane z  0. Th e strips are parallel 
and infi nite along the x-axis, with period l along 
the y-axis. Th e widths of the perfectly conducting 
and graphene strips are d and l  —  d, respectively. 
Th e surface conductivity g of the graphene strips is 
determined by the Kubo formula [6] 
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where  is the angular frequency, 0 0 0/W    is 
the free space impedance,  is the relaxation time 
of charge carriers (electrons) in graphene, c is the 
chemical potential,   is the Planck constant, kB is 
the Boltzmann constant,  is the fi ne-structure con-

stant, and T is the temperature (T ≈ 300 K, the room 
temperature).

Notably, formula (2) for 2 (the contribution of 
interband transitions to the graphene surface con-
ductivity) is valid for ( 0.026T c Bk T      
at the room temperature). Ibidem, 1 2   in 
the frequency range 0  , where 0 is the smal-
lest root of the equation Im 0.   In the frequency 
range 0 ,   the real and imaginary parts of the 
conductivity are positive (Re 0, Im 0)    for all 
frequencies. Th e time dependence is exp( )i t .

Th e process of the interaction between monochro-
matic electromagnetic radiation and a strip grating is 
modeled by the following two-dimensional diff rac-
tion problem. Let a TM-polarized monochromatic 
plane wave propagate in the plane x  0 at an angle  
to the z-axis (the magnetic fi eld strength is parallel 
to the x-axis),
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Here sin ,    the frequency parameter  and 
factor W0 are the same as in Eq. (2). 

Assuming all quantities x-independent ( 0,x

   

the grating strips are x-infi nite), we deal with a 
two-dimensional problem and seek the diff raction 
fi eld ( 0,0),d d

xH H


 (0, , )d d d
y zE E E


 resulting from 

the interaction between the incident wave (3) and 
the strip grating. 

Consider the spatial region ,D D Q D     
where 
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Th e problem geometry
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Let 0 ,i
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Th e function ud must satisfy the homogeneous 
Helmholtz equation
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and the following conditions, including the quasi-
periodicity condition
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the boundary conditions on the perfectly conducting 
grating strips,
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with ,n n    2 2 ,n n     Re 0,n   
Im 0n   (this choice of roots n ensures a physi-
cally consistent behavior of the energy characteristics 
of the diff raction fi eld and guarantees no incoming 
waves into the region Q), the boundary conditions 
on the graphene strips
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and the matching conditions across the dielectric 
layer (substrate) boundary , / 2,z h y l    
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Before constructing a solution to the diff raction 
problem (3)—(10) by the spectral approach, we take 
up a model diff raction problem with the view to 
solve it in closed analytic form using the spectral ap-
proach.

1.2. Th e model diff raction problem 
and the spectral approach 

Let u0 be a known function in the spatial region 
,D D D    where D is as defi ned above and 

 ( , ) : / 2, 0 .D y z y l z     Th e function u0 
obeys the Helmholtz equation
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where  is a known parameter.
Th e diff raction problem reduces to fi nding the 

solution 0 du u u   of Eq. (11), where ud satisfi es 
the quasi-periodicity condition (5), the boundary 
condition 
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Th e quantities , , , , ,n n
uu kz  




  have the 

same meaning as before. In particular, Re 0,n     
Im 0n  . 
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Problem (11)—(14) is the problem of diff raction of 
the u0 wave (a quasi-periodic source) on a graphene 
monolayer, z  0 in the region D. 

Along with the diff raction problem (11)—(14), the 
following spectral problem (no sources, 0 0)u   in 
the spatial region D is considered for the values of 
the spectral parameter  at which the homogeneous 
Helmholtz equation

2 0,u k u  

has nontrivial solutions satisfying quasi-periodicity 
condition (5), radiation condition (14), and the fol-
lowing conditions at z  0, / 2,y l

u u
z z
 
   , (15)

.uu u ik z
 
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
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Th is problem solution can be obtained by separa-
tion of variables in the following closed form 
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Th e direct calculation easily confi rms that the 
function nu  meets the normalization condition 
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Th e essence of the spectral approach to the dif-

fraction problem (11)—(14) is constructing its solu-
tion through a series expansion over the system of 
functions ( )n nu 

  (see Eq. (18)),
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If the series in Eq. (19) can be diff erentiated term 
by term repeatedly, at least twice (with respect to y 
and z), and the resulting series converge, then the 
function in Eq. (19) satisfi es the Helmholtz Eq. (11). 
Furthermore, radiation condition (14), quasi-periodi-
city condition (5), and condition (12) are automati-
cally fulfi lled. To determine the unknown coeffi  cients 
( ) ,n nA 

  simply substitute Eq. (19) into boundary 
condition (13) and utilize the orthogonality property 
of the system of functions ( )n nu 
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As follows from Eqs. (17) in view of (1) and (2), 
the vanishing of the denominators in Eq. (20) is out 
of the rule for real-valued 0   and 0  . Indeed, 
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As Re 0   (see Eqs. (1) and (2)), equality (21) 
cannot be fulfi lled for  and  real-valued. None-
theless, we can let the modulus of the denominator 
in Eq. (20) to a minimum for fi nding the values of 
the parameters 0   and 0   at which n   
attains its minimum with the index 0, 1, 2,...n     
fi xed. It follows from Eq.  (17) that Re 0n   and 
Im 0.n   Th erefore, these  and  must satisfy the 
equation
Im Im 0n    

and will be referred to as resonance values. In the vi-
cinity of the resonance values of these parameters in 
Eq. (19) for the diff raction fi eld, it would suffi  ce to 
retain a single series term with index n, 

0 .n nu u A u   
Th us, the spectral problem not only aids in con-

structing a diff raction problem solution but also 
identifi es the frequency parameter 0 02

l
  


  

values at which one can expect the diff raction fi eld 
resonance behavior as a function of the excitation 
monochromatic wave frequency. 
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2. Th e spectral problem. Mathematical 
justifi cation of the spectral method
Let us consider the spectral problem, beginning 
with the case of the relative permittivity   1 of the 
layer (substrate). Th e periodic structure is a planar 
strip grating of alternating perfectly conducting and 
graphene strips in the plane z  0 in the Figure. 

Th e problem is to identify the spectral parameter 
  values, at which non-trivial solutions u  of  homo-
geneous Helmholtz equation (4) exist in the region 
D and satisfy the quasi-periodicity condition (5), 
the boundary condition on the perfectly conducting 
strips of the grating,

0, 0, ,2
u u dz yz z
 
 

 
      (22)

the radiation condition (7), and the boundary condi-
tions on the graphene strips,

, 0, 2 2
u u l dz yz z
 
 

 
     , (23)

, 0, .2 2
u l du u z yik z

 



         (24)

Here u  and u z 
 are the limiting values of u  

and u z   as 0 0z   .
We meet the radiation condition (7) and seek a 

solution to this problem in the form 
2 2

2 2

, 0,

, 0.

n n

n n

i y i zl ln
n

i y i zl ln
n

R e e z
u

T e e z

  
 


  

 












 
 





  (25)

From conditions (22) and (23), it follows the re-
lationship between the unknown coeffi  cients Rn and 
Tn, 

, 0, 1,....n nR T n      (26)

From conditions (22) and (24) in view of (26), we 
obtain

2

2

0, 2

2 , .2

n

n

i yln n
n

i yln
n

R e

dy

dR e l y

 




 




 









  
  




   (27)

If the spectral parameter is 0,   then Eq. (27) in 
view of (22) yields

2 0.n n
n

R







  

When 2 2 0,n n      0, 1,...,n    then 
0nR   and, therefore, the spectral parameter 0   

only matches a trivial solution ( 0)u  of the spectral 
problem. In the opposite case 0,n   there exist non-
trivial solutions at some n, , and . It can be easily 
checked that these n, , and  satisfy the equation  

.n     (28)

From the perspective of wave diff raction theory for 
periodic structures [2, 3], these values of the frequency 
parameter  (see Eq. (28)) are related to Wood’s ano-
malies [7]. Namely, for ,n    the diff raction 

harmonic (Floquet wave)  2exp n ni y zl

      

is a plane homogeneous wave, while for ,n    
it is a plane inhomogeneous wave that exponential-
ly decays as .z    Near these frequency parame-
ter values ,n   the diff raction characteristics can 
change abruptly. Th erefore, the nontrivial solutions 
matching the spectral parameter 0   are physical-
ly associated with Wood’s anomalies.

In what follows below, we assume without loss of 
generality that 0,n   0, 1,...n   , i.e., .n    
Furthermore, suppose that for some 0,   there 
exists a nontrivial solution ,u  0   of the spectral 
problem (see Eq. (25)). Th en at m   (m is an inte-
ger), a nontrivial solution ,u  0   exists, 

2 2

2 2

, 0,

, 0,

n n

n n

i y i zl ln m
n

i y i zl ln m
n

R e e z
u

T e e z

  
 


  

 













 
 










where the coeffi  cients Rn and Tn are the same as those 
of the nontrivial solution u  (see Eq. (25)).

Th is property allows the range of the parameter  
to be limited to the interval [0,1).

Th e next step in constructing the spectral problem 
solution is to derive the coeffi  cients Rn ( )n nT R   
from Eq. (25). Make use of the orthogonality of the 
functions 2exp ,ni yl


 

    0, 1,...n    on the inter-

val ( / 2, / 2).l l  Th en Eq. (27) yields the following 
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infi nite system of linear algebraic equations for the 
coeffi  cients ,nR  0, 1,...n   , 

2 , 0, 1,... .m mn n
n

R A R m




 


     (29)

Here, the ,mn m nA 
  matrix elements are

 

1, ,1

sin , ,
mn

m

d m nlA d dc n m n ml l


  
       

  (30)

where sinsin ,XcX X  and, according to the radia-
tion condition (7), the coeffi  cients 2 2 ,m m     

m m    satisfy the inequalities Re 0m   and 
Im 0.m 

Rewrite system (29) in the matrix form  

2 ,R AR    (31)

where ,mn m nA A 
  and R is a column vector.

Let us defi ne the space of sequences to which solu-
tions of the matrix equation (31) must belong. Given 
the grating strip edges, the set of conditions listed 
above should be supplemented with the edge condi-
tion that the solution of the spectral problem must 
satisfy in the grating edge vicinity. We assume that 
the column vectors ( )T

n nR R 
  (T is a transpose 

operation) belong to the space of the sequences 

2
2 ( ) : (1 ) .T

n n n
n

l R R R n










      
  

   (32)

As shown in [2], this condition provides a physi-
cally consistent behavior of the function u  (see 
Eq. (25)) near the grating strip edges.

As 2 ,TR l  we can change over to the new un-
known vectors ( )T

n nX X 
  by the formula 

.
1

n
n

XR
n




  (33)

From Eqs.  (32) and (33) it follows that XT be-
longs to the space of square-summable sequences, 

2 .TX l  
In terms of the new unknown vectors X, Eq. (31) 

becomes 

2 ,X AX    (34)

where the elements of the matrix ,mn m nA A 
  

are related to the elements of the matrix A   
,mn m nA 

  as 

1 .
1mn mn

mA A
n





  (35)

Equation (34) should be considered in the space 
2 .l  It can be proved that the matrix A  defi nes a 

compact operator in this space 2l  (as a product of 
a compact and a bounded operators).

Th us, the initial spectral problem has been re-
duced to the eigenvalue  and eigenvector 2

TX l  
problem for the compact operator 2 A  in the Hil-
bert space 2 .l  As known [8], if A  is a self-adjoint 
compact operator, there exists an eigenvector basis 
of this operator. Th erefore, a solution of the equation 

2 AX X b     (36)

exists (if 0   and is distinct from eigenvalues) and 
can be written in the series form 

.n
n

nn

aX X



 


  

Here 2 ,n n nAX X   b is a known vector from the 
space 2 ,l  ( , ),n na b X  and ( , ) is a scalar product 
in 2 .l

Th e outlined idea underpins the spectral method 
for constructing the diff raction problem solution 
(vector b in Eq. (36) is determined by the excitation 
wave in the diff raction problem).

As is readily observed, operator A  in Eq. (34) (see 
also Eqs. (30) and (35)) is a non-self-adjoint opera-
tor in the space 2 ,l  suggesting that the strip grating 
structure is open and radiates energy into free space. 
Th e question of whether an eigenvector basis exists 
for such an operator is not trivial. Below, it will be 
shown that the eigenvector system of the operator 
2 A  is complete in the space 2 .l  Th is means that 
any vector 2X l  can be approximated by a linear 
combination of eigenvectors. In particular, a solution 
of Eq. (36) can be sought as a Fourier series expansion 
with respect to the system of eigenvectors of ope-
rator .A  

Let us examine some properties of eigenvalues 
and eigenvectors of the operator 2 A  and begin 
with the matter of eigenvalue existence in the case 
of a suffi  ciently small parameter / 1,d l   where 
d is the width of the perfectly conducting strips of 
the grating. As follows from Eqs. (30) and (35), the 
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matrix operator A  can be represented by the sum of 
two operators 

0 .dA D Vl    (37)

Here 0
,

,mn

m m n
D






 

   , ,mn m nV V 
  

sin ( ) 1
,

1mn
m

dc n m mlV
n





   



  and mn  is  the

Kronecker delta.
It is readily seen that the matrix operator 0D  is 

compact in 2l  because 1 / 0m   as .m   

Since 2

,
,mn

m n
V








  the operator V  is also 

compact. From Eq. (37) it follows that as / 0,d l   
the operator A  converges to 0D  in the operator 
norm. In particular, 0A D  for / 0d l   (no per-
fectly conducting grating strips). In this case, Eq. (34) 
becomes

02 .X D X    (38)

From Eq.  (38), it follows that the eigenvalues 
0 2 ,m

m





   0, 1,...m    exist along with the corre-

sponding eigenvectors ( ) .T
m nm nx 

   It is obvious 
that the system of the eigenvectors ,T

mx  0, 1, ...m    
forms an orthonormal basis in the space 2 .l  Th e val-
ues of the spectral parameter 0

m  coincide with the 
values of the spectral parameter defi ned in Eq. (17) of 
the model spectral problem (15)—(18).

If the parameter / ( / 0)d l d l   is suffi  ciently 
small, a circle with the center at 0

m  locates an eigen-
value of the operator A  (see Eq. (37)). To prove that, 
we introduce the operator-functions 

0( ) ( ) 2 , ( ) 2 ,dB C V C I Dl        

of the complex spectral parameter , with I being an 
identical operator in 2 .l

Th e operator-functions ( )B   and ( )C   are ana-
lytic functions of the parameter  in the complex 
plane. Th e equations 

( ) 0, ( ) 0B X C X  

are equivalent to Eqs. (34) and (38), respectively.
Now we have nothing to do but make use of the 

operator generalization of Rouché’s theorem [9] (see 

[3] and the references therein). Let 0
m  be an eigen-

value of the operator 02 .D  A circle with the center 
at 0

m  only contains eigenvalue 0
m , and the inverse 

operator 
1

1

,

2( ) mn
m m n

C





  








      exists 

on its boundary. Since  is located on the boundary 
of the circle, then 0 ,i

m re     0 2 .    Th ere-
fore, the operator norm 1( )C   at 0 i

m re     sa-
tisfi es the inequality 1 1( ) .C r 

According to the operator generalization of 
Rouché’s theorem, if the inequality 

1 2( ) 1dC Vl


    (39)

holds on the boundary of the circle, then an eigen-
value of the operator-function ( )B   exists inside this 
circle and, hence, so does an eigenvalue of the ope-
rator-function 2 .A  

If / 0,d l   then the inequality 
2 1d Vr l
 

is true, and so is inequality (39). Th us, for each eigen-
value 0 ,m  0, 1,...m    of the operator 0 ,D  there 
exists a circle that locates a single eigenvalue of the 
operator 2 .A  Th is fact allows the eigenvalues of the 
operator 2 A  to be numbered in the same way as 0 .m  

Now let us prove that the system of eigenvectors of 
the operator 2 A  is complete in the space 2 .l  Using 
Eqs. (30) and (35), represent Eq. (34) as follows 

( ) ,2
i X I D VX


 
 

(40)

where operators D and V have the following matrix 
representations

 

, ,

2 2

2 2

, ,
( 1)

1, ,

1 1, ,

1 1 , ,1

sin ( )
, .

1 1

m mn mnm n m n

m
m

m

m
m

mn

D d V V
i m

d
m

d m nlm
dV c n ml d m nln m

 
 

 
 

 
 



  
       

 
   
     

     

(41)
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From Eq.  (41) it comes that, fi rst, 0md   as 
m   and, hence, D is a compact operator in the 
space 2 .l  Second, mn nmV V  and 2

,
.mn

m n
V   

Hence, V is a self-adjoint Hilbert-Schmidt operator 
in the space 2 .l

According to the results obtained in [10] (see [3] 
and the references therein), the structure of the ope-
rator from Eq. (40) guarantees that its system of eigen-
vectors and associated vectors is complete in the 
space 2 .l  Let the associated vectors be absent. Th is 
assumption has some basis because no such vectors 
exist as / 0d l   (narrow perfectly conducting gra-
ting strips). Th e numerical calculations in the gene-
ral case 0 / 1d l   confi rm this assumption.

Th us, the eigenvector system of the operator from 
Eq. (40) is complete. Hence, the spectral method can 
be applied to solving the diff raction problem.

For the effi  cient application of the spectral method, 
the eigenvectors must be orthogonal. Ensure that ei-
genvectors corresponding to distinct eigenvalues are 
orthogonal in a sense. Let Xp and Xq be eigenvectors 
with .p q   Introduce vectors *

pX  and *
qX  whose 

components are complex conjugates of the compo-
nents of the vectors Xp and Xq . From Eq. (40),

* * *( )( , ) ( , ) ( , ).2 p q p q p q q p
i DX X VX X VX X 


  
(42)

Here ( , ) is a scalar product in the space 2,l  
  1

, ,m mn m nD I D d 




  

2 2

2 2

, ,1

, .1

m
m

m
m

m

i
m

d

m

 
 

 
 

    
  

Since V is a self-adjoint operator, the right-hand 
side of Eq. (42) is zero. So, if ,p q 

*( , ) 0.p qDX X    (43)

Equality (43) is the condition of the orthogonality 
of eigenvectors of the operator ( )I D V  (or 2 ).A  
Let ( )( )T p

p n nX X 
  and ( )( ) .T q

q n nX X 
  Th en 

Eq. (43) can be written as 

( ) ( ) 0.p q
n n n

n
d X X




  

From here on, the eigenvectors pX  are 
*( , )p pDX X  normalized. Th en, for the normalized 

eigenvectors, the orthogonality condition takes the 
appearnce

*( , ) .p q pqDX X    (44)

Let ( )( )T p
p n nX X 

  be an eigenvector and p  
be an eigenvalue. Th e solution of the spectral prob-
lem given by Eqs. (4), (5), and (22)—(24) can be rep-
resented in the following form

2 2( )
, 0.

1
n n

p i y i zn l lp
n

z Xu e e zz n

  
 


 

   (45)

We will apply the spectral method to construct a 
solution of the diff raction problem (4)—(10). Here 
we restrict ourselves to the scenario without a dielec-
tric layer,   1. Th e case 1   is left  to Part II of the 
paper.

According to radiation condition (7), we obtain
2 2

0

2 2
0

, 0,
1

( ) , 0.
1

n n

n n

i y i zn l l

n

i y i zn n l l

n

Xu e e z
n

u
X e e z

n

  
 


  

 












 

 
  




 

(46)

Equation  (46) accounts for the boundary con-
dition (9) on the graphene strips. Having substitu-
ted (46) into the boundary conditions (8) and (9), 
one arrives aft er some transformations at

2
0

2

( )
1

0, ,2
2 , .21

n

n

i yn n ln
n

i yn l

n

X e
n
dy

X de y
n

 




 














 


  
 
 





  

(47)

As in the spectral problem case, Eq.  (47) redu-
ces to the system of linear algebraic equations in 

( )T
n nX X 

  (X is a column vector, XT is a row 
vector, and T is a transpose operation). Th is system 
of equations in the operator form is

2 ( ) .X b I D VXi



     (48)

Th e matrix operators D and V are the same as 
in Eqs. (40) and (41), and 0( ) .T

n nb 
   Th e un-

known column vector X is sought in the space 2 .l
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Let p  and py  be eigenvalues and eigenvectors. 

Th en we have ( ) .2 p p p
i y I D Vy


   Th e eigen-

vectors are normalized and satisfy the orthogonality 
condition (44)

1 *(( ) , ) .p q pqI D y y     (49)

As established above, the system of eigenvectors is 
complete in the space 2l . Th is fact allows us to seek a 
solution of Eq. (48) in the series expansion form

,n n
n

X A y



    (50)

where nA  are the unknown coeffi  cients. 
To identify ,nA  we substitute Eq. (50) into Eq. (48) 

and impose the orthogonality condition (49) to have
*( , ) .n

n
n

Db yA 
 




Th en, 
*( , ) .n

n
nn

Db yX y





 


   

Here 
1( ) ,D I D    ( )*

0 0( , ) ,n
nDb y d y  

( )( ) ,T n
n m my y 

  
and

2 2

0 2 2

, ,

, .

i
d

   

   

   
 

 

In the diff raction problem, sin    and hence 
0 cos .d i    Th en the solution of Eq. (48) takes 

the form
( )
0cos .
n

n
nn

yX i y




 
 

 
   (51)

Substituting Eq.  (51) into Eq.  (46) and using 
Eq. (45), we have the initial diff raction problem solu-
tion as follows

( )
0

0 cos .
n

n
nn

yu u i u




 
 

 
   (52)

It can be shown that the eigenvalues n  sa-
tisfy the conditions Re 0,n   Im 0.n   Since 
Re 0,   Im 0   in the frequency range 0   

0(Im ( ) 0),    then for some index 0 ,n  there exist 
such  and  values (in the diff raction problem, 

sin )    for which 

0
Im Im 0.n    

At these values of the frequency parameter, the 
term (52) with index 0n  dominates. Th erefore, the 
diff raction fi eld in the vicinity of these frequency pa-
rameter values is approximately 

0

0
0

( )
0

0 ...
n

n
n

yu u i u
 

  
 .

Th e structure of the diff raction fi eld is determined 
by the solution of the spectral (source-free) problem.

Th us, the spectral method allows us to model the 
resonance behavior of the diff raction fi eld as a func-
tion of the frequency parameter.

Conclusion
Th e spectral method for solving problems of electro-
magnetic wave diff raction by one-dimensional pe-
riodic diff raction gratings with graphene strips has 
been developed. Th is method allows us to represent 
the diff raction fi eld as a series of eigenfunctions of a 
homogeneous spectral problem with a spectral pa-
rameter (eigenvalue) included in the boundary con-
dition on graphene strips. Th e amplitudes of the 
series terms are inversely proportional to the diff e-
rence between the imaginary parts of the spectral pa-
rameter and the surface conductivity of the graphene 
strips. Th erefore, at an external source frequency 
when these diff erences become zero, the amplitude 
of one of the series terms becomes dominant, ma-
king a diff raction fi eld resonance. In essence, Part I 
has presented a rigorous mathematical interpretation 
of the spectral method as applied to a planar strip 
grating formed by alternating perfectly conducting 
and graphene strips. 
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МОДЕЛЮВАННЯ РЕЗОНАНСНИХ ЕФЕКТІВ В ОДНОВИМІРНИХ 
ПЕРІОДИЧНИХ ДИФРАКЦІЙНИХ ҐРАТКАХ, ЩО МІСТЯТЬ СТРІЧКИ ГРАФЕНУ
Частина 1. ОБҐРУНТУВАННЯ СПЕКТРАЛЬНОГО МЕТОДУ

Предмет і мета роботи. Теоретично досліджується проблема взаємодії монохроматичного електромагнітного ви-
промінювання з одновимірно періодичними стрічковими ґратками. Ґратки утворено ідеально провідними та графе-
новими стрічками, що періодично повторюються, які розташовано на межі плоского діелектричного шару. Метою 
роботи є обґрунтування спектрального методу для дослідження резонансних ефектів, що виникають при взаємодії 
електромагнітного випромінювання зі стрічковими ґратками.

Методи та методологія. Для обґрунтування спектрального методу використано результати теорії несамоспряже-
них компактних операторів у гільбертових просторах і теорії компактних аналітичних операторів-функцій. Зокрема, 
теореми Келдиша про повноту власних і приєднаних векторів несамоспряжених компактних операторів і операторне 
узагальнення теореми Руше для аналітичних операторів-функцій.

Результати. Наведено строге математичне трактування спектрального підходу до розв’язання задач дифракції на 
одновимірно періодичних стрічкових ґратках, що містять стрічки графену. Встановлено, що дифракційне поле можна 
задати у вигляді ряду за власними функціями спектральної задачі, в якій спектральний параметр (власне значення) 
лінійно входить у граничну умову спряження на графенових стрічках. Доведено існування розв’язань спектральної 
задачі для випадку малих ширин ідеально провідних стрічок. Доведено повноту системи власних функцій (векторів) 
у відповідному гільбертовому просторі. І, як наслідок, обґрунтовано представлення дифракційного поля в нескінчен-
ній області у вигляді ряду резонансних членів. Отримано рівняння для резонансних частот — рівність уявних частин 
спектрального параметра та поверхневої провідності графенових стрічок ґратки.

Висновки. Розроблений спектральний метод дозволяє ефективно досліджувати резонансні ефекти, що супрово-
джують взаємодію електромагнітного випромінювання з одновимірно періодичними дифракційними ґратками, які 
містять стрічки графену. Його можна застосовувати для математичного моделювання різних приладів і пристроїв, 
що використовують стрічкові ґратки, які містять стрічки графену.

Ключові слова: графен, одновимірно періодичні дифракційні стрічкові ґратки, компактний оператор, резонанс, гіль-
бертів простір, поверхнева провідність.


