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MODELING OF RESONANCE EFFECTS IN ONE-DIMENSIONAL
PERIODIC DIFFRACTION GRATINGS CONTAINING GRAPHENE STRIPS

Part 1. MATHEMATICAL JUSTIFICATION OF THE SPECTRAL METHOD

Subject and Purpose. This paper presents a theoretical study of the interaction between monochromatic electromagnetic radiation
and a one-dimensional periodic strip grating. The grating consists of periodically alternating perfectly conducting and graphene
strips located at the boundary of a planar dielectric layer. The aim is to provide a mathematical justification for the spectral method
analysis of resonance effects arising during the interaction of electromagnetic radiation with the strip grating.

Methods and Methodology. The mathematical justification of the spectral method is based on the theory of non-self-adjoint com-
pact operators in Hilbert spaces and the theory of compact analytic operator functions. In particular, we apply Keldysh’s theorems on
the completeness of eigenvectors and associated vectors of non-self-adjoint compact operators, as well as the operator generalization of
Rouchés theorem for analytic operator functions.

Results. The spectral approach to solving the diffraction problem of a one-dimensional periodic strip grating, which includes
graphene strips, has received a rigorous mathematical treatment. It has been established that the diffraction field can be repre-
sented as an expansion in eigenfunctions of the spectral problem, where the spectral parameter (eigenvalue) enters linearly into
the boundary condition of conjugation on the graphene strips. The existence of the spectral problem solution has been proved in
the case of small widths of the perfectly conducting strips. The completeness of the system of eigenfunctions (eigenvectors) in the
corresponding Hilbert space has been demonstrated. As a consequence, in an unbounded region, there is a possibility to expand the
diffraction field in resonance terms. An equation for resonance frequencies has been derived, indicating that the imaginary part of
the spectral parameter equals the imaginary part of the surface conductivity of the graphene strips in the grating.

Conclusions. The developed spectral method enables effective analysis of resonance effects that occur when electromagnetic
radiation interacts with a one-dimensional periodic diffraction grating that includes graphene strips. This method can be used in
the mathematical modeling of various devices and systems that utilize such gratings.

Keywords: graphene, one-dimensional periodic diffraction strip grating, compact operator, resonance, Hilbert space, surface
conductivity

Introduction ment of tunable metamaterials and integrated plas-

monic devices with potential applications in the tera-
Recent advances in the fabrication of graphene hertz and infrared frequency ranges (see, e.g., [1]).
and graphene-based periodic nanostructures have The design of graphene-based devices is fundamen-
opened up promising opportunities for the develop-  tally related to the advancement of modeling tools
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that utilize rigorous solutions of Maxwell’s equations
and graphene conductivity models. Of particular
interest and practical importance is modeling vari-
ous resonance effects occurring during the interac-
tion between electromagnetic radiation and periodic
graphene-based nanostructures. One of the recog-
nized approaches in this field exploits the idea of analy-
tic continuation of a frequency into its complex domain
(generally, to a certain Riemannian surface) in terms of
the boundary value problem of diffraction governed
by Maxwell’s equations. The solution of this problem
describes the interaction of monochromatic electro-
magnetic radiation with open resonant-type struc-
tures, such as periodic gratings containing graphene.
The sense of this analytic continuation procedure is
clear, implying that the singularities of the analyti-
cally continued solution of the diffraction problem
fully determine the behavior of corresponding charac-
teristics of the diffraction field in the domain of real-
valued parameters (e.g., real frequency).

The analysis of these singularities is a field of sig-
nificant research into the nature and physical mecha-
nisms of resonance and anomalous responses of
open structures to external excitations. The funda-
mental concepts and methods of this approach ([2]
and the references therein) are believed to be espe-
cially effective for studying the diffraction of mono-
chromatic electromagnetic waves by various types
of periodic structures [3]. The main drawback is the
impossibility of representing the diffraction field as a
series expansion in resonance terms, similar to eigen-
mode expansion in the theory of closed resonators.
Although such representations are possible in some
special cases (analogous to the Mittag-Leffler ex-
pansion in the theory of meromorphic functions of
complex variables), they are not generally available.
Another weakness is somewhat technical and arises
from the fact that the complex frequency domain cor-
responds to an infinite-sheeted Riemannian surface.
(for problems of wave diffraction on periodic struc-
tures [3]). In general, a global uniformization of such
Riemannian surfaces is not known, which signifi-
cantly complicates the analysis of diffraction prob-
lems. Furthermore, significant challenges arise when
the structure physical parameters (dielectric permit-
tivity, graphene surface conductivity in the Kubo for-
mulation, etc.) vary with frequency.

In response to modeling resonance effects in pe-
riodic nanostructures, the authors consider an alter-
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native approach based on a different idea, which was
seemingly first introduced [4] for quantum mechani-
cal scattering problems in terms of the Schrédinger
equation. In [4], the Schrodinger equation solution
in an unbounded domain is series expanded in eigen-
functions of an auxiliary spectral problem, where the
spectral parameter (eigenvalue) is the coupling con-
stant, the factor multiplying the potential energy term.
In diffraction theory, this idea allows representing the
solution of Maxwell’s equations in an unbounded re-
gion as a series expansion in eigenfunctions of an
auxiliary spectral problem (without sources). This ap-
proach has become known as the generalized method
of eigenoscillations (see references in [5]). In this for-
mulation, it should be particularly emphasized that
(i) the spectral parameter is not a frequency, eigen-
functions of the auxiliary spectral problem satisfy the
same radiation condition as the diffraction problem
solution does, (ii) the frequency remains real-valued,
and there is no need for the analytic continuation of
the solution into the complex frequency domain, and
(iii) the main concept of the approach is that the spec-
tral parameter is not a frequency (as in the previous
approach) but some physical parameter, e.g., the con-
ductivity of graphene. Importantly, the amplitudes
of the expansion terms are inversely proportional to
the difference between the spectral parameter (eigen-
value) and the corresponding physical parameter in
the diffraction problem. Since the spectral parame-
ter depends on frequency, resonances may occur at
frequencies where the spectral parameter approa-
ches the physical parameter. This method is akin to
the classical technique of eigenmode expansion for
diffraction problems in bounded regions (theory of
closed resonators).

In this context, a spectral method is developed for
modelling resonance effects arising in the interaction
of monochromatic electromagnetic radiation with a
diffraction grating of periodically alternating per-
fectly conducting and graphene strips.

Part I presents a rigorous mathematical formu-
lation of the spectral method as applied to a planar
strip grating of periodically alternating perfectly con-
ducting and graphene strips. The auxiliary spectral
problem (the spectral parameter is the surface con-
ductivity of graphene) is reduced to the eigenvalue-
and-eigenvector problem for a non-self-conjugate
compact operator in the corresponding Hilbert
space. The completeness of the system of eigenvec-
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tors is established, which allows the diffraction field
in an unbounded region to be expressed as a series
expansion in resonant terms.

Part II is devoted to the extension of the spectral
method to the diffraction problem of the aforemen-
tioned planar strip grating located at the boundary
of a dielectric layer. Mathematical modeling results
on resonance effects accompanying the electromag-
netic interaction with this grating structure will be
reported.

1. The problem formulation,
the model problem

1.1. The diffraction problem

The problem of interaction between monochromatic
electromagnetic radiation and a planar strip grating
composed of periodically alternating perfectly
conducting and graphene strips is considered. The
grating is supported by a planar dielectric layer
(substrate) of thickness h, absolute permittivity
e€g, and permeability u,, with €5 and u, being the
vacuum permittivity and permeability. In Cartesian
coordinate system x, y, z in the Figure, the grating
is located in the plane z= 0. The strips are parallel
and infinite along the x-axis, with period I along
the y-axis. The widths of the perfectly conducting
and graphene strips are d and [ — d, respectively.
The surface conductivity g, of the graphene strips is
determined by the Kubo formula [6]

0=0,W, =0, +0,, (1)
iK T i 2
0,=—2L—, 0, =al =+arctgf_ —=In S ,
K+ill 2 2 1+
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_ ool il oty

20 M hm

_ kBTl\/Soﬂo = l\/goﬂo
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>

where w is the angular frequency, W, =/ o / &, is
the free space impedance, 7 is the relaxation time
of charge carriers (electrons) in graphene, u, is the
chemical potential, % is the Planck constant, kp is
the Boltzmann constant, « is the fine-structure con-
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stant, and T is the temperature (T= 300 K, the room
temperature).

Notably, formula (2) for o, (the contribution of
interband transitions to the graphene surface con-
ductivity) is valid for «, > kr (u, > kgT = 0.026
at the room temperature). Ibidem, |0, |>|0,| in
the frequency range w < w,, where w, is the smal-
lest root of the equation Imo = 0. In the frequency
range w < ®,, the real and imaginary parts of the
conductivity are positive (Reo >0, Imo > 0) for all
frequencies. The time dependence is exp(—iwt).

The process of the interaction between monochro-
matic electromagnetic radiation and a strip grating is
modeled by the following two-dimensional diffrac-
tion problem. Let a TM-polarized monochromatic
plane wave propagate in the plane x=0 at an angle ¢
to the z-axis (the magnetic field strength is parallel
to the x-axis),

H' =(H.0,0), E' = (0,E},EL),

i(CDy—\//cz—Cbzz)z—n , WV k2 —d*

e B, = ——
K

C Wd (3)

E; = —"—H;.

Hi =

Here ® = ksing, the frequency parameter £ and
factor W, are the same as in Eq.(2).
Assuming all quantities x-independent (8_ =0,
X

the grating strips are x-infinite), we deal with a
two-dimensional problem and seek the diffraction
field HY = (Hf0,0), E = (O,Ed,E‘Zi) resulting from
the interaction between the incident wave (3) and
the strip grating.

Consider the spatial region D=D" UQuU D™,
where

D* ={(y,2):|y|<1/2,0<z<+},

D™ ={(y,2):|y|<1/2, z<-h},
Q={(n2):|y|<l/2,—h<z<0}.
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L(y,z)e D" U D™,

&(1,2)€Q.
The function u; must satisfy the homogeneous
Helmholtz equation

Let uy = H.,uy = H%, and E:{

Auy +k*gu; =0, (y,2) €D (4)

and the following conditions, including the quasi-

periodicity condition

uy(=11/2,z) = eizn(bud(l /2,2),

aud(—l/Z,z)zeizﬂ(D aud(l/Z,z) (5)
dy dy

the boundary conditions on the perfectly conducting

grating strips,

aud

s = (0+ud) 0, z=0, |y|<— (6)

the radiation condition in DT w D™,

il
ZR nl)’znl (y,Z)ED+,
Ug = = (7)
h
ZT @,y T ) , (5,2)e D",

n=—o0

with ®,=d®+n, T,=+k?—-®2, Rel,>
ImT,, 20 (this choice of roots I, ensures a physi-
cally consistent behavior of the energy characteristics
of the diffraction field and guarantees no incoming
waves into the region Q), the boundary conditions
on the graphene strips

__0od d
ugy +uy —uy :—ig(ug+u§),z:0,|y|>5,
(8)
d 10uy d
&(lxla— +u})=;¥, z=0, y >E, (9)

and the matching conditions across the dielectric
layer (substrate) boundary z =

1 Jul  Juj
wh=u;, ——4 =4 10
d = > e dz 0z (10)
+
Hereinafter, u* and 97 are the limits of the u

and g—z functions as z—> 0%+ 0(z — —h £0). Also,

k = w\[(‘foﬂo.
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The total diffraction field H = (H,0,0), E=
=(0,E,,E;) in the region D is defined by the func-
tion

) uo g, (y,z)e D",

- ud; ()’;Z)ED_UQ)

B = W du o Wodu
*TY T ke dz’ ¢ ike dy’

Before constructing a solution to the diffraction
problem (3)—(10) by the spectral approach, we take
up a model diffraction problem with the view to
solve it in closed analytic form using the spectral ap-
proach.

1.2. The model diffraction problem
and the spectral approach

Let uy be a known function in the spatial region
D=D*uD~, where D" is as defined above and
D~ ={(y,z):|y| <l/2,z<0}. The function u,
obeys the Helmholtz equation

Auo + k2u0 = O,

(11)

and the quasi-periodicity condition

uy(=172,2) = e2™uy(1/2,2),
auo(—l/Z,Z)z 2”(13 auo(l/z,z)

dy dy
where @ is a known parameter.

The diffraction problem reduces to finding the
solution u = uy, +u,; of Eq.(11), where u, satisfies
the quasi-periodicity condition (5), the boundary
condition

ouj Juy
—4 -4 7=, 1/2, 12
9z 09z ° [yl<ts (12
uh —u; =-— a(u +u ) (13)
d d k Jz 0 d
and the radiation condition
iT
ZR nlylnl (y,Z)ED+,
n=—o0
ug = 2:1 (14)
ZT "ly I, (y,2)eD".
n=—oo
. dut
The quantities ®,, T, u™, R , k, 0 have the

same meaning as before. In particular, ReI’, =0,

ImT, >0.
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Problem (11)—(14) is the problem of diffraction of
the uy wave (a quasi-periodic source) on a graphene
monolayer, z=0 in the region D.

Along with the diffraction problem (11)—(14), the
following spectral problem (no sources, u, =0) in
the spatial region D is considered for the values of
the spectral parameter y at which the homogeneous
Helmbholtz equation

AU+ Ku=0,

has nontrivial solutions satisfying quasi-periodicity
condition (5), radiation condition (14), and the fol-

lowing conditions at z=0, y| <l/2,

du Ju

. ydu’

“ ik 0z ° (16)

This problem solution can be obtained by separa-
tion of variables in the following closed form

2
2K 0412,

1
Yo =-T (17)

_ 1 2] E@peTf2)
u,=—F7—e ,
JI z
The direct calculation easily confirms that the
function %, meets the normalization condition
l

Hu*(y,0+0)‘2dy=1.
0

z#0. (18)

The essence of the spectral approach to the dif-
fraction problem (11)—(14) is constructing its solu-
tion through a series expansion over the system of
functions (u,);-_. (see Eq.(18)),

u=uy+ Z A,u,. (19)

n=—oo

If the series in Eq. (19) can be differentiated term
by term repeatedly, at least twice (with respect to y
and z), and the resulting series converge, then the
function in Eq. (19) satisfies the Helmholtz Eq. (11).
Furthermore, radiation condition (14), quasi-periodi-
city condition (5), and condition (12) are automati-
cally fulfilled. To determine the unknown coefficients
(A,)e—w> simply substitute Eq. (19) into boundary
condition (13) and utilize the orthogonality property
of the system of functions (u;);-_,, on the interval
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(=1/2,1/2) along with boundary condition (16) for
u,, . After some transformations,
A = ioan\ﬁ
"o2al, (0 -vy,)
where
! 2w
a, = J.e_iTq)”y %dy.

,n=0,x1,%2,..., (20)

0

dug _ Juy(y,0+0)
Here i 9z .

As follows from Egs.(17) in view of (1) and (2),
the vanishing of the denominators in Eq.(20) is out
of the rule for real-valued £ =20 and ® > 0. Indeed,

I,(c-vy,)=T,0+2k.

Radiation condition (14) gives ReI',, 20, ImT", >
> 0. Taking

[,0+2k=0 21)
yields
ReT, = — 2kReo ’
(Reo)? + (Imo)?
ImT 2kImo

" (Reo) +(Imo)

As Reo >0 (see Egs.(1) and (2)), equality (21)
cannot be fulfilled for k and ® real-valued. None-
theless, we can let the modulus of the denominator
in Eq.(20) to a minimum for finding the values of
the parameters x>0 and @ >0 at which [0 -y, |
attains its minimum with the index n=0,%£1,%2,...
fixed. It follows from Eq.(17) that Rey, <0 and
Imy, > 0. Therefore, these k and ® must satisfy the
equation

Imo—-Imy, =0
and will be referred to as resonance values. In the vi-
cinity of the resonance values of these parameters in

Eq.(19) for the diffraction field, it would suffice to
retain a single series term with index n,

u=uy+Au,.

Thus, the spectral problem not only aids in con-
structing a diffraction problem solution but also

I
identifies the frequency parameter k = %«/50/‘0

values at which one can expect the diffraction field
resonance behavior as a function of the excitation
monochromatic wave frequency.
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2. The spectral problem. Mathematical
justification of the spectral method

Let us consider the spectral problem, beginning
with the case of the relative permittivity € = 1 of the
layer (substrate). The periodic structure is a planar
strip grating of alternating perfectly conducting and
graphene strips in the plane z=0 in the Figure.

The problem is to identify the spectral parameter
y values, at which non-trivial solutions z of homo-
geneous Helmholtz equation (4) exist in the region
D and satisfy the quasi-periodicity condition (5),
the boundary condition on the perfectly conducting
strips of the grating,

out  odu”
0z 0z

the radiation condition (7), and the boundary condi-
tions on the graphene strips,

(22)

out  du” l d

T e by 29

T S A LA U I (24)
ik 9z> “= 0 277y

Here ™ and 0u* / 0z are the limiting values of u
and 0u/dz as z—>0£0.

We meet the radiation condition (7) and seek a
solution to this problem in the form

o0 27 27
i®,—y il[,—=z
ZRne"’e 17, z2>0,
u=3""" (25)
27
D, y —11“,1—2
z T,e l I z<O.
n=—oo

From conditions (22) and (23), it follows the re-
lationship between the unknown coefficients R, and
T,

n

=T, n=0,%l,... (26)
From conditions (22) and (24) in view of (26), we
obtain
y 2 r R D, l )’
n=—oo
d
0, <—
I71<3

> iszly d
~2k ) Rye 1>]y]> 3 (27)

n=—oo

168

If the spectral parameter is v = 0, then Eq.(27) in
view of (22) yields

2 |Rn |2rn =0.

n=—oo

When T, =+/k%—®2 20, =0,%1,.., then
R, =0 and, therefore, the spectral parameter y =0
only matches a trivial solution (# = 0) of the spectral
problem. In the opposite case I', = 0, there exist non-
trivial solutions at some #, k, and ®. It can be easily
checked that these n, k, and ® satisty the equation

=|n+CI)|. (28)

From the perspective of wave diffraction theory for
periodic structures [2, 3], these values of the frequency
parameter k (see Eq.(28)) are related to Wood’s ano-
malies [7]. Namely, , the diffraction

harmonic (Floquet wave) exp(izTn( Dyt Fnz))

is a plane homogeneous wave, while for « < |n +o |,
it is a plane inhomogeneous wave that exponential-
ly decays as z — *oo. Near these frequency parame-
ter values |n+ ®@|, the diffraction characteristics can
change abruptly. Therefore, the nontrivial solutions
matching the spectral parameter y =0 are physical-
ly associated with Wood’s anomalies.

In what follows below, we assume without loss of
generalitythat '), #0, n=0,%1,...,i.e,, kK # |n + d)|.
Furthermore, suppose that for some @ >0, there
exists a nontrivial solution 7, y # 0 of the spectral
problem (see Eq.(25)). Then at ® = m (m is an inte-
ger), a nontrivial solution #,, y # 0 exists,

D, y Fn
an+m l l ,z>0,

="
* © L. 27 27
z(I)nTy —zF”Tz
z Tnime e , 2<0,
n=—oo

where the coefficients R, and T), are the same as those
of the nontrivial solution % (see Eq.(25)).

This property allows the range of the parameter ®
to be limited to the interval [0,1).

The next step in constructing the spectral problem
solution is to derive the coefficients R, (T,, =—R,)
from Eq.(25). Make use of the orthogonality of the

functions exp(izan)ny), n=0,%1,...
val (=//2,1/2). Then Eq.(27) yields the following

on the inter-
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infinite system of linear algebraic equations for the
coefficients R,, n=0,%1,...,

YRy =2k D AyyRym=0,%1,....

(29)
n=—oo
Here, the || A ||:)n:_w matrix elements are
d
1 7 -1, m=mn,
Amn = m . d d (30)
sinc T(n— m) T nEm
sin X

where sincX = , and, according to the radia-

tion condition (7), the coefficients T, = y/k* — ®2,,
d,, = m+ P satisfy the inequalities ReI’,, >0 and
ImI,, 0.

Rewrite system (29) in the matrix form

YR = 2KAR, (31)

where A =|A,,, ||:;’n:_c>o and R is a column vector.
Let us define the space of sequences to which solu-
tions of the matrix equation (31) must belong. Given
the grating strip edges, the set of conditions listed
above should be supplemented with the edge condi-
tion that the solution of the spectral problem must
satisfy in the grating edge vicinity. We assume that
the column vectors RT = (R,)%__,, (T is a transpose
operation) belong to the space of the sequences

1 :{RT: Rt D, |R, (1+|n|)<00} (32)
n=—o0
As shown in [2], this condition provides a physi-
cally consistent behavior of the function u (see
Eq.(25)) near the grating strip edges.
As RT e l_2, we can change over to the new un-
known vectors X7 = (X,,)% o by the formula

R, = SR (33)
Jn]+1
From Egs. (32) and (33) it follows that XT be-
longs to the space of square-summable sequences,
xTel,.
In terms of the new unknown vectors X, Eq.(31)

becomes
vX = 2kAX, (34)

where the elements of the matrix A = || A, ||:’n=_oo
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are related to the elements of the matrix A=

= ”Amn ”::,nz—oo as

i A 1/|m|+1

mn mn \/W °

Equation (34) should be considered in the space
l,. Tt can be proved that the matrix A defines a
compact operator in this space I, (as a product of
a compact and a bounded operators).

Thus, the initial spectral problem has been re-
duced to the eigenvalue y and eigenvector X' €1,
problem for the compact operator 2kA in the Hil-
bert space [,. As known [8], if A is a self-adjoint
compact operator, there exists an eigenvector basis
of this operator. Therefore, a solution of the equation

(35)

2kAX =yX +b (36)

exists (if  # 0 and is distinct from eigenvalues) and
can be written in the series form

.

n=—oo

ayn
X,
Yn =V g

Here 2kAX, = y,X,, bis a known vector from the
space I, a, =(b,X,,), and (,) is a scalar product
in [,.

The outlined idea underpins the spectral method
for constructing the diffraction problem solution
(vector b in Eq.(36) is determined by the excitation
wave in the diffraction problem).

As is readily observed, operator A in Eq.(34) (see
also Egs.(30) and (35)) is a non-self-adjoint opera-
tor in the space I,, suggesting that the strip grating
structure is open and radiates energy into free space.
The question of whether an eigenvector basis exists
for such an operator is not trivial. Below, it will be
shown that the eigenvector system of the operator
2kA is complete in the space I,. This means that
any vector Xel, can be approximated by a linear
combination of eigenvectors. In particular, a solution
of Eq.(36) can be sought as a Fourier series expansion
with respect to the system of eigenvectors of ope-
rator A.

Let us examine some properties of eigenvalues
and eigenvectors of the operator 2kA and begin
with the matter of eigenvalue existence in the case
of a sufficiently small parameter d/l <1, where
d is the width of the perfectly conducting strips of
the grating. As follows from Egs. (30) and (35), the
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matrix operator A can be represented by the sum of
two operators

A=D,+ ?\7. (37)
Here Dy=|-22[ | VoL
0 Fm S ? mn iy, pn=—c0 >

sinc(ﬂld(n— m)]w/|m| +1
T
" J|n|+1T,

Kronecker delta.
It is readily seen that the matrix operator D, is
compact in I, because 1/T,, =0 as |m|—> co.

<)

Since 2 |an |2 <o, the operator V is also
m,n=—oo

compact. From Eq. (37) it follows thatas d /1 — 0,

the operator A converges to D, in the operator

norm. In particular, A= D, for d/1=0 (no per-

tectly conducting grating strips). In this case, Eq. (34)

becomes

, and O, is the

mn

yX =2kD,X. (38)
From Eq.(38), it follows that the eigenvalues
Y0, = _I%_K’ m = 0,%1,... exist along with the corre-

m

sponding eigenvectors x., = (3,,,)5_. Itis obvious
that the system of the eigenvectors x1, m=0,%1,...

forms an orthonormal basis in the space I,. The val-
ues of the spectral parameter %, coincide with the
values of the spectral parameter defined in Eq.(17) of
the model spectral problem (15)—(18).

If the parameter d/I(d/l#0) is sufficiently
small, a circle with the center at 99, locates an eigen-
value of the operator A (see Eq.(37)). To prove that,
we introduce the operator-functions

d—
B(y)=C(y)- 265V, C(y) = yI - 2kD,,

of the complex spectral parameter y, with I being an
identical operator in I,.

The operator-functions B(y) and C(y) are ana-
lytic functions of the parameter y in the complex
plane. The equations

B(y)X=0, C(y)X=0

are equivalent to Eqgs. (34) and (38), respectively.
Now we have nothing to do but make use of the
operator generalization of Rouché’s theorem [9] (see
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[3] and the references therein). Let y° be an eigen-
value of the operator 2xD,,. A circle with the center
at %, only contains eigenvalue y9,, and the inverse

26\ ’
[V"’Iw_) 6mn

m

m,n=—00
on its boundary. Since 7 is located on the boundary
of the circle, then y = %, +re", 0< ¢ <2x. There-

operator C7(y)= exists

fore, the operator norm C™(y) at y = y2 + re'? sa-
1

tisfies the inequality “ Cl(y) H <-.
r

According to the operator generalization of
Rouché’s theorem, if the inequality

Hcl(y)#v <1 (39)

holds on the boundary of the circle, then an eigen-
value of the operator-function B(y) exists inside this
circle and, hence, so does an eigenvalue of the ope-
rator-function 2kA.

If d/1— 0, then the inequality

2k d
ol
is true, and so is inequality (39). Thus, for each eigen-
value )/31, m=0,%tl,... of the operator D,, there
exists a circle that locates a single eigenvalue of the
operator 2k A. This fact allows the eigenvalues of the
operator 2k A to be numbered in the same way as y9,.
Now let us prove that the system of eigenvectors of
the operator 2kA is complete in the space I,. Using
Eqgs.(30) and (35), represent Eq.(34) as follows

[V] <

ﬁyX - (I + D)VX, (40)

where operators D and V have the following matrix
representations

D= ”dmamn ”:,n:—oo » V= ”an ":l,n:—oo >
j 1
m_l’,om)“,
d = K — @2
"o |m|+1
-Lk<|®,]|

M%l(‘%—l), m=n,
\%

s1nc( i (n m)jé
NN

(41)

, m#n.
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From Eq.(41) it comes that, first, d,, >0 as
m — o and, hence, D is a compact operator in the

space I,. Second, V,,=V,, and ZV,,ZM < o,
Hence, V is a self-adjoint Hilbert-Schmidt operator
in the space 1,.

According to the results obtained in [10] (see [3]
and the references therein), the structure of the ope-
rator from Eq.(40) guarantees that its system of eigen-
vectors and associated vectors is complete in the
space I,. Let the associated vectors be absent. This
assumption has some basis because no such vectors
existas d /I — 0 (narrow perfectly conducting gra-
ting strips). The numerical calculations in the gene-
ral case 0<d /I <1 confirm this assumption.

Thus, the eigenvector system of the operator from
Eq.(40) is complete. Hence, the spectral method can
be applied to solving the diffraction problem.

For the efficient application of the spectral method,
the eigenvectors must be orthogonal. Ensure that ei-
genvectors corresponding to distinct eigenvalues are
orthogonal in a sense. Let X, and X, be eigenvectors
with y,, # y,. Introduce Vectors X, and X whose
components are complex conjugates of the compo-
nents of the vectors X, and X, . From Eq. (40),

i = * * *
ﬂ(yp - yq)(DXP’Xq) = (VXP’Xq) - (VXq’Xp)
(42)
Here (,) is a scalar product in the space I,

D=(I-D) _||d 6mn||

m,n=— °°
i K — @2
B —W’ K> D, ],
m
@2, — k2
—77ﬁTI]f—, K‘<|Q)m|.

Since V is a self-adjoint operator, the right-hand
side of Eq.(42) is zero. So, if Vo E Vg

(DX ,,X,)=0 (43)

Equality (43) is the condition of the orthogonality
of eigenvectors of the operator (I + D)V (or 2kA).
Let X; =(xPH>__, and XqT = (X\)* .. Then
Eq.(43) can be written as

Y, d,xP X =0.

n=—oo
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From here on, the eigenvectors Xp are

1/(13X p,X;,) normalized. Then, for the normalized

eigenvectors, the orthogonality condition takes the
appearnce

(DX, X,) =0 (44)

Let X; =(XP)>__, be an eigenvector and Vs
be an eigenvalue. The solution of the spectral prob-
lem given by Eqgs. (4), (5), and (22)—(24) can be rep-
resented in the following form

_lzl s 2 zcbn%”yefrn%”\z\)

z = n|+
We will apply the spectral method to construct a
solution of the diffraction problem (4)—(10). Here
we restrict ourselves to the scenario without a dielec-
tric layer, € = 1. The case € # 1 is left to Part II of the

paper.
According to radiation condition (7), we obtain

z#0. (45)

nz—ny iFﬂz—ﬂz
I7e 1

Uy + Z , 2>0,
u= =N "|+ o (46)

2w ,
2 (X (30,, zq)nTye—anTz

n=—o0o

, 2<0.

Equation (46) accounts for the boundary con-
dition (9) on the graphene strips. Having substitu-
ted (46) into the boundary conditions (8) and (9),
one arrives after some transformations at

1/|n|+1

d
0 |yl<3

n=—oo

2n

2/C 2 nT}’
b
= |+

As in the spectral problem case, Eq.(47) redu-
ces to the system of linear algebraic equations in

T = (X, )m=—on (X is a column vector, XT is a row
vector, and T is a transpose operation). This system
of equations in the operator form is

y| > é (47)

2

X=b+ %C(I + D)VX. (48)

The matrix operators D and V are the same as
in Egs. (40) and (41), and bt = (O9y )me—co- The un-
known column vector X is sought in the space /,.
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Let y, and y, be eigenvalues and eigenvectors.

Then we have iypyp =(+D)Vy,. The eigen-

vectors are normalized and satisfy the orthogonality
condition (44)

((I+D) " ypyg)=0 (49)

As established above, the system of eigenvectors is
complete in the space /, . This fact allows us to seek a
solution of Eq.(48) in the series expansion form

X = i AnYns

n=—0o

(50)

where A, are the unknown coefficients.

To identify A,,, we substitute Eq.(50) into Eq.(48)
and impose the orthogonality condition (49) to have
_ (Db, (Db, y,)o )0

0=Vn

A, =
Then,
Z (Db yn)a

e 07 Vn
Here
D=(I+D)", (Db,y,)=dyyS", yi =
and

_ —iyk? - D2, k>|D|,

d. =
Vo -k k<],

_ In the diffraction problem, ® = ksin¢ and hence
dy = —ikcosg. Then the solution of Eq.(48) takes
the form

oo
= —iKO COS z

n=—00

(G710

(51)
_Vn

Substituting Eq. (51) into Eq.(46) and using
Eq.(45), we have the initial diffraction problem solu-
tion as follows

( )
———Uu,. (52)

n

U= Uy — iKO cos¢p Z
e = Vn
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It can be shown that the eigenvalues y, sa-
tisty the conditions Rey, <0, Imy, =0. Since
Reo >0, Imo >0 in the frequency range k < k,
(Imo(ky) =0), then for some index n,, there exist
such k and @ values (in the diffraction problem,
® = ksing) for which

Imo —Imy, =0.

At these values of the frequency parameter, the
term (52) with index n, dominates. Therefore, the
diffraction field in the vicinity of these frequency pa-
rameter values is approximately

y(no
—iko—=2"—U 4.

u=1u,
0 o — yno gy

The structure of the diffraction field is determined
by the solution of the spectral (source-free) problem.

Thus, the spectral method allows us to model the
resonance behavior of the diffraction field as a func-
tion of the frequency parameter.

Conclusion

The spectral method for solving problems of electro-
magnetic wave diffraction by one-dimensional pe-
riodic diffraction gratings with graphene strips has
been developed. This method allows us to represent
the diffraction field as a series of eigenfunctions of a
homogeneous spectral problem with a spectral pa-
rameter (eigenvalue) included in the boundary con-
dition on graphene strips. The amplitudes of the
series terms are inversely proportional to the diffe-
rence between the imaginary parts of the spectral pa-
rameter and the surface conductivity of the graphene
strips. Therefore, at an external source frequency
when these differences become zero, the amplitude
of one of the series terms becomes dominant, ma-
king a diffraction field resonance. In essence, Part I
has presented a rigorous mathematical interpretation
of the spectral method as applied to a planar strip
grating formed by alternating perfectly conducting
and graphene strips.
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Incruryt papiodisuku ta enexkrponiknm im. O.41. Yeukosa HAH Ykpainu
Byn. Akan. IIpockypu, 12, M. Xapkis, 61085, Ykpaina

MOJE/IIOBAHHA PESOHAHCHMX EOQEKTIB B OTHOBMMIPHUX
NEPIOOVYHMX OVOPAKIIMHUX TPATKAX, IO MICTATD CTPIYKIM TPAGEHY
Yactuua 1. OBTPYHTYBAHHS CITEKTPAJIBHOI'O METOY

ITpenmer i MeTa po6orn. TeopeTHYHO JOCTIIKYETbCA IPOOIEMa B3a€EMOJil MOHOXPOMATUYHOTO €eKTPOMAarHiTHOrO BM-
IIPOMIHIOBaHHs 3 OJHOBUMIPHO I1epiOANYHIMY CTPIYKOBUMY I'paTKaMu. [paTKu yTBOPEHO iiea/IbHO IPOBiLHNMY Ta rpade-
HOBVMIMM CTDPiYKaMJ, IO IEePiOANYIHO MOBTOPIOIOTHCA, AKi pO3TAIIOBAaHO Ha MEXIi IVIOCKOTO Jie/IeKTPUYHOro mapy. Meroro
po6OTH € OOTPYHTYBAHHA CIIEKTPATbHOIO METOAY M/IA JOCTIIKEHHA Pe30HaHCHUX eeKTiB, [0 BYHUKAIOTb PV B3aEMOAii
€/IEKTPOMATHITHOTO BUIIPOMiHIOBaHHA 3i CTPIYKOBMMY I'DaTKaMM.

Metopu Ta MeTOogomNOTiA. [I/11 0O6IPYHTYBaHHA CIIEKTPAIIbHOTO METOMY BUKOPYICTAHO Pe3y/IbTaTH Teopii HecaMocHpsiKe-
HVX KOMIIAaKTHUX OIIePaTOPiB y riIbOepTOBYX IIPOCTOPAX i TeOpil KOMIIAKTHMX aHAIITUYHIUX OIlepaTopiB-(yHKIiA. 30KpeMa,
Teopemu Kenpiuiia 1po IOBHOTY B/IaCHUX i IPUEJHAHUX BEKTOPIB HECAMOCIIPSAKEHMX KOMIIAKTHUX OIIEPATODIB i olepaTopHe
y3arajibHeHHs TeopeMy Pyiie [i/1s aHaITUYHUX OIepaTopiB-PyHKIiIL.

Pesynbratu. HaBeneHo cTpore MaTeMaTyyHe TPAKTYBAHH:A CIEKTPaIbHOTO IiIXOMY /IO PO3B’A3aHHA 3ajay Audpakiii Ha
OJJHOBMMIPHO IIePiOANYHIX CTPIYKOBUX IPaTKaX, 110 MiCTATH CTpiuky rpadeny. BcranosneHo, 1o andpakxiiiiiHe moue MoXXHa
3aJaTy Y BUMIAAL PALY 3a BTaCHUMM QYHKLIAMM CIIeKTPasIbHOIL 3a/jadi, B SAKill CIIeKTpaJbHMII TapaMeTp (BIacHe 3HAYEHH:)
NHITHO BXOUTh y TPAHNYHY YMOBY CIIPsDKEHHs Ha rpad)eHOBUX CTpiukax. JJoBefieHO iCHyBaHHS PO3B sI3aHb CIIEKTPa/IbHOI
3ajayi /14 BUMAJIKy Ma/IUX LIMPKH ilea/TbHO MPOBiHNX CTPiuoK. [loBefjeHO TIOBHOTY CUCTEMM BJIACHUX (YHKIIIN (BEeKTOpIB)
y BifmoBifHOMY rinb6epToBoMy IpocTopi. I, sIK Hac/mifoK, 0OIPyHTOBAHO IIpeACTaBIeHHs AU(PAKIIITHOTO 0/ B HECKiHYeH-
HilT 06/1acTi y BUITIALL pARY pe3oHaHCHUX WieHiB. OTpUMaHO PiBHAHHA /I Pe30HAHCHMUX YaCTOT — PiBHICTD YABHUX YaCTUH
CIIEKTPa/IbHOTO ITapaMeTpa Ta IOBEPXHEBOI MPOBiFHOCTI rpad)eHOBMX CTPIYOK IPATKIL.

BucHoBKM. Po3po6eHnii crieKTpanbHNil MeTOf, 03Bo/A€ eeKTUBHO JOCTIKYBaTH Pe30HAHCHI eeKTH, 1[0 CYyIPOBO-
IKYIOTb B3a€MOJIIO €IeKTPOMArHiTHOTO BUIPOMIHIOBAHHS 3 ONHOBMMIPHO HepiogdHuMy AnpakuiitHuMu IpaTKaMu, AKi
MicTATb cTpiuku rpadeny. Vioro MoxxHa 3aCTOCOBYBATH [/l MaTeMaTUIHOTO MOJIEIOBAHHSA PISHUX IPUIAIB i IPUCTPOIB,
1110 BUKOPUCTOBYIOTb CTPIYKOBI I'PaTKM, AKi MICTATH CTpiuky rpadeny.

Kntouoei cnosa: spagen, 00HosumipHo nepioduuni Oudparkyiiini cmpiukosi ipamxu, KOMNAKMHULL 0Neparmop, pe3oHamc, 2inv-
bepmis npocmip, nosepxresa nposioHicmo.
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